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BAYES LEAST SQUARES LINEAR REGRESSION IS

ASY PTOTICALLY FULL BAYES:

ESTIMATION OF SPECTRAL DENSITIES

1. INTRODUCTION

Bayes least squares linear (BLSL) estimators were introduced

by Whittle (1957, 1958) and described explicitly and further devel-

oped by Hartigan.(1969). The method was applied to estimation of

coefficients of orthogonal expansions of regression functions in

m~k -49O). In -he present paper . that when many

________________C6~n b e~c t I
observations are available we can expect the BLSL method/to yield

substantially the same results as a full Bayesian treatment; and

%-w-ti iimrate the method Ain the context of estimation of spectral

densities. In that context, the estimators suggested will appear

rather ordinary. But they are not completely ad hoc: each comes

with an interpretatica. And, when large samples are available,

the posterior distribution of the estimator at a fixed frequency

is (approximately) normal, with easily calculated standard deviation.

2. ORTHOGONAL EXPANSIONS AND THE BLSL METHOD

z In order to be more explicit, we recall the description of the

estimators given in (Brunk, 1980). Since the size of the data set

is relevant here, we allow the number of observations to appear in

the notation. Thus for each integer n we have a set

4 {xno, Xnl, ... xnn of values of an "explanatory variable" in a

space X of possible values. The regression function R isn
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defined on X and is assumed to have a finite expansion in terms of

specified functions rno, Rno and ( nr' r - 0, 1, ... , n}:

no n

Rn ( -) R n(o ) + r o(x) I 8 r *(x), x Cx. (2.1)

The observations or responses (Y no, Yni "'" ' Ynn) are assumed

independent, and Y is assumed to have meannj

E(Y y) - R(x j) (2.2)

and variance

Var(Yn) - 1 /In n , J-O,1, ...,n, (2.3)

where no ... ,W are known. We shall assume also that X

is known, though in practice A may be estimated from the data.

(One can state less restrictive assumptions that suffice. In

what follows, as elsewhere, a tilde underline indicates a random

4. entity, and " :-" is used between two expressions when the left

is defined by the right. These assumptions are that the linear

. N expectation of Y be R (xn):nj n nj

LE(Y n " 8) " n n (R ) , - ,1 , ..., n

where :- ($ , ... , 8 ) ; and the linear covariance matrix
.* -n ..no -nn

of Y :- (Y , ... ,Y )' given n - have entriesn no nn ..n n

E(Yi R n(x)][Y . R (z .)]jY -R) - iJ nnJni n nn n an

1,1 0 , is n
-N -I.
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here 6ij is the Krouecker delta: 5ij = 1 if i - j , 6j - 0
ii ii .i

if ±4+:j. )
The functions { nr, r -0, 1, ... ,n1 are assumed selected

so as to be orthonormal with respect to the design of the experiment:

n v.r 2(x, ( (. (2.4)
J.O nj no n *nr (nj us j 6 rs

The function Rno is thought of as a prior mean, so that one sets

E( ) -0 , r - O, 1,..., n . (2.5)

.nr

It is argued in (Brunk, 1980) that since each coefficient 0nr has

an interpretation independent of n for s + r , it may often be
no

reasonable to assign B := (n , , a joint prior

distribution according to which the components 0no' " n are

independent; and we set

:= l/Var(nr) , r -0, 0 ,... ,n . (2.6)

Set

n

U n 1j0vnj rno (znj nr (znj [ nj -Rno (xni
(2.7)

n
i c nrW _ , r = 1,...,

where

cn : air (x ) N*(x ) (2.8)
n ni no nj nrnj

and

"p - . . ..-. : -... . -. . . ---. . . '.,,;.,.,,.,'"....'.'..'-"".. ... ",., ''"
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Wnj :" IT nJ [Y - Rno (x rj) r,j -0,... ,n. (2.9)

That is, the random vector

u : (Uo Un no "" n

is obtained by applying the orthogonal transformation C to the
n

vector W : (W , ... ,W )' P wheren no

(Cn)rj r-0, 1, ... ,n, jO, 1,...,n.

It follows from (2.4) that

E(U ln- =B n) " ,r (2.10)

and that

[cov(unr ' ne) I.n n On] " ars / Xn (2.11)

Then the linear expectation of 8n given Uno, ... , U is given

by

" nr -X nU nr/ (X +T nr) I r-0, 1,...,n (2.12)

and the linear variances and covariances are given by

E(O - )2 - 1/(A +r r-0,1, ... ,n , (2.13)..nr ..nr n nr

E - )(0 - 0 0 for r + s. (2.14).nr nr .na .ns

For fixed x, the linear expectation of R (x) is, n
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n
R W R )- R W)+ r (S) V 0 *(x) (2.15)n no no Lr-O nrn

and its linear variance is

EQ([- R()]2) - o r- 2(xnf(X)I(Xn +T) (2.16)
R (x)]) o rr=O (x n

Note that the method does not, in general, provide posterior

covariances.

It will be useful to note that when R - 0 and T 0
no n

for j - 0,1, ... ,n, the formula for R (x) provides the ordinary
n

least squares regression of Y on z with weights vnJ 9

j - 0, 1,... ,n. Indeed, when k is fixed, k (= n , the

orthogonality properties of the functions (#nr : r 0 0, 1, ... , n }
k

lead to k anr nr as ordinary least .squares estimator of Rn,

where

Ana r J 0 nj n (Xj j , r=O 0 ,1.. k

Note that ant = Ur if Rno - 0 and ant - 0nr if also
Tn , r , o, e. k n

Of course, the BLSL estimators may be considered from a con-

ventional point of view. That is, one may choose, as is customary

when estimating a regression function Rn , some family of functions

considered adequate for representing it. One may then orthogonalize

these functions with respect to the design, to obtain functions

Our . r - 0, .. ,n ; and then specify a function Rno and

"precisions" LT nr r - 0, 1, 2, ... ,n}, thus finally obtaining

.. •
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• . an estimator of the regression function R n But such an estimatorn

is not completely ad hoc; it comes with an interpretation. One

realizes that one is considering the same estimator that another

investigator would use who was applying the Bayes least squares

linear method, specifying Rno as a prior mean, and the

{TUr, r - 0, 1, ... , n} as precisions of the coefficients in the

expansion of R . And one may like to bear that in mind whenn

specifying R and the precisions.
nO

In principle, an investigator who is well acquainted with the

functions { nrI to be used, and who also has a clear and definite

opinion as to the probable shape of the regression function to be

estimated, can specify, more or less uniquely, a prior mean and prior

precisions. But in practice, there may be a rather wide variety of

specifications that all seem reasonable. One may then examine a

number of estimates arising from a range of "reasonable" priors.

As to the specification of the prior mean, Rno, a heuristic argu-

ment is given in (Brunk, 1981) that it is often reasonable to fit

the data--roughly--by a member of a family of smooth functions

depending on only one or two parameters. That leaves still the

precisions, Tnr, r- 0, 1,... ,n. Two suggestions come from think-

ing of them as reciprocals of prior variances of the parameters

Onr, r - 0, 1, 2, ... ,n.

i) If the functions *nr oscillate more and more rapidly

- with increasing r, one can express an opinion that the estimate

R is "smooth" by specifying large values of Tnr when r is large.
n n

C(1i) The precisions should be specified independently of the

data.

"- "-q" ' .- ' ' . " . . - -. .--. -.--.. ,., .,.- " ' '''
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3. APPROXIMATE NORMALITY

Now let us briefly imagine that the random variables

Uno9 ... ,U were observed (rather than Y , ... ,Y ), that they

were independent according to their joint distribution given 0n ,

and that

U nr. n n N(0nr . 1A n) (3.1)

Suppose also that 0 n is given a joint prior distribution according

to which its components 8no' """ 0n are independent, and

8nr ~N(0, l/nr), r - 0, 1, ...,n . (3.2)

Then these components are also independent and normally distributed

according to their posterior distribution, with

z(a , N uno , .. n -' u ) - 'nur/(Xn + T ) , (3.3)

(cf. (2.12) ) and

VarCOnr Uno -Uno . nn uUnn) " lXn + Tnr

(3.4)

r - 0, 1,..., n

(cf (2.13), (2.14))

We are interested particularly in contexts in which one ex-

presses an opinion as to the "smoothness" of Rn  by assigning

large precisions Tnr to the coefficients of rapidly varying

functions *nr in the expansion of R Then, typically, there
iao ent

i is a positive integer a such that the posterior mean and variance
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of nr are so near zero for r ) m that corresponding terms in

the expansion can be neglected; and this is so also for the posterior

linear expectation and for E(B - 0 ) 2  in the BLSL method.
.nr -nr

When the observations Yno ... Y are not jointly normal,nonn

but n is large, we shall argue that often Uno ... ,U nnWill

have approximately a joint normal distribution (cf. Theorem 4.1,

to follow). The data U no ... Un are fully equivalent to the

original data Y no '... , Y : each may be obtained from the other

by an orthogonal linear transformation. And for some positive

integer m, U l, ... , U may safely be ignored, so that if

'.no .. tnn are given the multinormal prior distribution des-

cribed above, then according to their joint posterior distribution

they are (approximately) jointly normally distributed with posterior

means given by (2.12) and (3.3) and posterior variances by (2.13) and

(3.4). A theorem (Theorem 4.1) that suggests this approximation is

given in Section 4, and its proof in the appendix.

4. ASYMPTOTIC NORMALITY

We consider triangular arrays !V : V o V ' "" ,kn

n - 1, 2, ... , where k U - as n i- c , and where E(Vn) = 0,

Var(V 1 -, j -0,1,.. k .We shall argue that this array
n* j

is asymptotically normal, given B " n when
_.n n

V [= rUr - E(U )]/[Var(U )]k r - 0,1, ... (4.1)

nr Ur nr(4.1)

provided that kn does not grow too fast. We use Mallows's (1972)

definition of asymptotic normality: the array I' is jointly

0 

/0

4,

.N
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asymptotically normal (j.a.n.) if for every array., .d, of reals
kn

ao, a ,...,,an., no 0,1,... , such that I-O an2 - l, the
no Aii r-O nr

random variable I n ant Vnr converges in distribution to the

standard normal distribution. (Mallows (1972) observes that this

implies that for each d , (V- . , Vnd) converges in distri-

bution to the standard d-dimensional normal distribution.)

Theorem 4.1. Let there be a positive number M such that

(I Ely 13i M~ - , (4.2)n nj nj nj

where

ynj :- E(Yn)-R (_)i , j ) 0,1, ... , n, n-l,2, (4.3)

And suppose that
k
n

mazA k ( )I (x ) 1 1 jonal9 .n 0
nj no j rno nr W

(4.4)

as n-o-m .

Then the array V is J.a.n.

The proof, given in the appendix, consists of showing kin a

n
straightforward way that the characteristic function of 1 n a Vr-0 nr nr'

evaluated at a real number t, converges to exp(-t 2/2) as

n ' . This theorem presents an instance of a phenomenon studied

by Mallows (1969). Note that the random variables U are obtained
nr

via an orthogonal transformation from the random variables W ; and

that while these are independent, they need not be normally distri-

buted. Although the inverse orthogonal transformation would recover

the original non-normal random variables, the random variables Unr

are -Aeverthel, s J.a.n. Mallows (1969) proves a theorem with a

." .-.. . . .'.." 9,*-*. ,.- . .- .-. -% . " • . S" . -
. . ~~~~~ , ,./ . . . . .' . ,. '.. . . . .". .... .. '.,'..'.... ..,...... . .-
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somewhat stronger conclusion, described in terms of the integrated

squared difference between the standard normal distribution function

and the distribution function it approximates. As stated, Mallows's

theorem requires independent, identically distributed random vari-

ables. While the method of proof appears to allow a relaxation of

that requirement, it does seem to require that the distributions not

be too nearly of lattice type.)

5. BLSL ESTIMATION OF SPECTRAL DENSITIES

We consider the problem of estimating the spectral density of

a stationary, purely nondeterministic time series

X Xt . 80 a S %t-s

(not necessarily Gaussian), where the random variables E

t ... ,-1,0,1, ... are independent with zero means and common

variance. The coefficients as , s - 0,1, ... , are unknown, but we

assue that I - mt l< and that
t.0

SUP E C2 i 1 J -a-4 0 as c -- 4

(cf. Anderson (1971), page 482). The spectral density, to be

estimated, is

f(W) - r(t)exp(27iwt) ,-1/2 (w 1/2,
tuB -40

where

r(t) : E(Xs X s+)

,..

.4 " ; " : : -,,: ." " - " """ - " -" " "" -" "". " '"" "- -"" " "'-' -' "" ':
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is the covariance function. We follow Wahba (1980) in formulating

the problem as an ordinary regression problem, with values of the

log periodogram (cepstrum) as data. Let Xl, X2, .. X2n be

observed. We have

2n
I n(w) : (1/2n) X X exp(2iaat) 12 -1/2 ( ( 1/2

I := I (J/2n) (I (-J/2n))

- f(J/2n)TnJ

where

Tnj I /f(J/2n) , - 0, 1, 2, ... , n.

Asymptotically, as n i, the random variables {Tn, j- Oi,...,n}

are independent, with T and T distributed as X2 (i) and

2T - X2(2) for j - 1,2,..,n-1 (Anderson, 1971, pp. 484-485).

We set

Y : logI C , Ji - O ,....n,

where C - C :- (in 2 + y) , C y, j -1,2,.... n-i, and

V "where y is the Euler-Mascheroni constant, approximately 0.57721.

", .% Then the random variables {Y~j 9 0,1, ... , n) are asymptotically

independent, with {YnI j - 1,2, ... ,n-i} asumptotically identically

distributed.

We set

SnR (x) :- log f(x/2) for 0 (- x (- 1.

According to the asymptotic distribution,

q # - ,- o .o , ,.'o- , .".% o' . , ,--. . - °.** . '." .'°o . . .. . . . -• .-, .. * . '.' ' '.
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According to the asymptotic distribution,

E(nj) n) n (xnj
9-..

where xnj :- J/n for j -0, 1, 2, ..., n, while

Var(n) = 1 2/6, - 1, 2, ... , n-l,

Var(Yn) w 12/2 for J - 0, n.

We shall conduct the analysis and carry out the computations as if

Var(Ynj) - ff2/3 for j - 0, n, since in any case the influence of

these two terms is negligible for large n In the notation of

Section 2, then, we take

Inj : nn :- 1/2, rnj :- 1 for j-1,2, ...,n-l,

and (5.1)

n 6/w2 , n = 1,2,...

The functions *Ur are given by

*no Cx) :- V- ,

nr (x) := (2/n)2 cos irx, r - 1,2, ... ,n, x e [0,1]

The function rn used is identically 1.

It is most convenient to take as R a linear combination of

the functions {*nr : r - 0, 1,... ,n} . As we noted earlier, a

heuristic argument is given in (Brunk, 1981, page 117) that it is

reasonable for the investigator to select as prior mean R a
o

regression function that is consistent with both the data and his

'U "",,- ' " - . < - '- •. .% . . . ., .-. .-.. . -. .,.-., . . -%-.". .. "",-,-% - . .
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opinion as to its shape. In particular, the investigator may simply

use ordinary least squares with weights w. , ... , nr to choose
no nn

coefficients a 0 , a, ..., ak for k - 1 or 2 or 3 in fitting the
• ko

9 function arn to the data. This would yield
r uO

k

0 r-O ar

where

n
ar := lo njnr (X nj)ynji-a

And then (cf. the end of Section 2) if T0 T 1 T k 0,

we have

n
RIL R(X) r- 0' *Cx) where

I nr nr+T

nr n nr n nr

and

S( wn
U • =- r * x , r-=0,1, .. ,n.
r nr nj nr ni ni

In other terms, if the investigator chooses to consider a specifica-

. tion of prior mean and precisions that has R0  as the ordinary

* least squares estimator of R as a linear function of" n
J no..nl "'' ,k and has prior precisions T - ... = -0,

then a is precisely what it would be if he took R 0 0 (in whichn: n
case U would become U' )

nr nr
The functions *nr described above depend--in a simple way--on

n. It is more convenient when considering specification of preci-

sions to use functions independent of n: (n/2) so
n hnr

that

9.q
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0: vTT, (x) := cos irrx, r > 0. (5.2)

We set

8nr : (2/n) , r 0,1,... , n.

Then-n being fixed--we are assuming that R has an expansion
n

*n * *

* R(x)-no (x) +X 0nr B t(x)' xc [0,1]

While formally the assumed expansion of R depends on n,* n

we consider that terms of large index are negligible; and each

term is in fact independent of n, so that we write

Rrx) - Ro(x) + e r * (x) , x C [0,1. (5.3)

-4

abhe, hvefficens {6 r =0,1, .. ,} modeled as random vari-

E(Or ) M 0

and precisions

Tr : l/Var(O .

In the present context and notation, Equation (2.12) becomes
* * U*(54)

" Bnt r /(n/2 + Tr /6) ,(5.4)

where

* n *

Ur : o irnj*r (J/n)[Yj-R°(i/n)3]
J'o

r -0,1,... , . (5.5)

.,%. ,..% ,%. ,.. ..'.4.'*..,.-.:,*: .,. ....'....:,. .... ..........*.;.. ...*..,.. .... :... ... ,.,.',.



15

We note tha E(2U n ) * , and that 2Ur/n is the ordinary
*

least squares estimate of 8 with weights r ±- 0,1, ... , n.
r n

For fixed x c (0,1] , the posterior linear expectation of R(x) is
^ n

(x) - R ( x ) + (5.6)r= nr* (x)(.)

and its linear variance is

z[-(x) - R = [(x)l2/ (3n/r + r (5.7)Ur-O

In view of Theorem 4.1, when n is large we expect the posterior

distribution of R(x) to be approximately normal with mean R (x)n

given by (5.6) and variance given by (5.7).

6. EXAMPLES

As a first example, we have used the example used by Wahba

(1980):

3
Xt [k-l Yk Xt-k + 1 t

vhere y 1 1.4256 , 2= -0.7344 , 73 - 0.1296, and where the

random variables t ... , -2, -1, 0,1,2, ... are independent,

each having the standard normal distribution. The simulation was

carried out starting with X30 = 0 and then discarding

X_3 0, X 2 9, ... , X. (These observed Xt are not to be confused

with x : J/n in the formulas in Section 5.) One set of 256

points was obtained in this way (n- 128), as also a larger set of

1024 (n- 512) containing the first.
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The function R used is defined by:
0

The accompanying Tables 1 and 2, and Figures 1 through 14,

relate to the following four specifications of precisions

T r - 0, 1,..,n

rr

A: r : (0.02 )64 r)
r

C: rr :0.0004)(6.r
r

and

D: T :=0.1(3)r

Table 1 indicates the "damping" effect of each specification of

precisions; that is, the entry in the table is 1/(1 +w 2 TI 3n)
r

the factor by which the ordinary least squares estimate, 2U /n,
r

is multiplied to obtain ,when n - 128 (256 observations).
r

The entries in Table 2 are for n - 512 (1024 observations).

Each specification of (T *, r - 0, 1, . ,}leads to a "vindow
r

4 estimator" that could be considered from a conventional point of

view. Any or all of these specifications might appear reasonable

to an investigator. The precisions specified under D increase

* most rapidly, and might be expected to lead to the smoothest esti-

mates of R . Initially, the precisions A increase somewhat more

rapidly than those of B, though eventually those of B increase

much more rapidly. In fact, those of B were deliberately selected

(by regression of log Trr on r , from A) so as to be near those

of A for r(-10 .

i! 7-.
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Table 1

Multipliers for n -128

rA B cD

0 1.000 1.000 1.000 0.997
1 1.000 1.000 1.000 0.992
2 1.000 1.000 0.998 0.977
3 0.999 1.000 0.993 0.935
4 0.994 0.999 0.974 0.828

5 0.963 0.993 0.905 0.616
6 0.860 0.959 0.704 0.348
7 0.641 0.787 0.373 0.151
8 0.380 0.365 0.129 0.056
9 0.193 0.083 0.036 0.019

10 0.093 0.014 0.009 0.007
11 0.046 0.002 0.002 0.002
12 0.023 0.000 0.001 0.001
13 0.012 0.000 0.000 0.000
14 0.007 0.000 0.000 0.000

15 0.004 0.000 0.000 0.000
16 0.002 0.000 0.000 0.000
17 0.001 0.000 0.000 0.000
18 0.001 0.000 0.000 0.000
19 0.001 0.000 0.000 0.000

20 0.000 0.000 0.000 0.000
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Table 2

MultiVpliers for n = 512

r A B c D

0 1.000 1.000 1.000 0.999

1 1.000 1.000 1.000 0.998

2 1.000 1.000 1.000 0.994

3 1.000 1.000 0.998 0.983

4 0.998 1.000 0.993 0.951

5 0.991 0.998 0.974 0.865

6 0.961 0.990 0.905 0.6817 0.877 0.936 0.704 0.416

8 0.710 0.697 0.373 0.192

9 0.489 0.265 0.129 0.073
.

10 0.292 0.053 0.036 0.026

11 0.161 0.009 0.009 0.009

12 0.087 0.001 0.002 0.003

13 0.048 0.000 0.001 0.001

14 0.027

15 0.016
16 0.009
17 0.006
18 0.004
19 0.002
20 0.002

.9'

, j.* - %a a9 j.. . .. 
• * - .

.. .. a•m . .. . . . . #. - -. -
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Figure 1 shows both the true R(x) :- log f(x/2) and the

estimate R obtained from the 256 observations (n - 128) using

precisions A. Figures 2, 3, and 4 show estimates obtained through

precisions B, C, and D respectively. Figure 5 shows first and

fourth estimates, together with the true R. Figure 6 provides the

graphs for the first prior, but based on the 1024 observations

(n - 512), and Figure 7 is for the fourth prior. Figure 8 shows

first and fourth together.

Figure 9 shows the spectral density estimate and the true

' spectral density, graphed against twice the frequency, for the

first prior (A), and 256 observations. The curves lying above and

below the graph of the estimate indicate the precision of the

estimate in the following way. For fixed x, the asymptotic

theory leads us to expect R (x) to be approximately normally

distributed according to its posterior distribution. Its (approxi-

mate) posterior variance is given by (5.7). Letting a(x) denote

the square root of this posterior variance, the upper and lower

graphs are graphs of exp[R(x) + a (x)) . Figure 10 gives the

same information for the fourth prior (D), and Figure 11 shows

first and fourth estimates together. Figures 12 and 13 compare

with Figures 9 and 10, but for the case of 1024 observations.

Spectral density estimates for first and fourth priors are shown

together in Figure'14, for the case of 1024 observations.

For a second example we have used underwater ambient noise

data kindly furnished by the Naval Undersea Warfare Experiment

Station at Keyport, Washington. A sample of 1024 observations

.4
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(n - 512) was taken, with effective sampling frequency 80 khz. The

procedure described in Section 5 was followed, and precisions

:= 0.1(3 ), r - 0, 1, ... , 512 were used. Figure 15 shows ther

estimated log spectral density, together with graphs obtained by

adding and by subtracting the square root of the expected squared

error; i.e., (approximately) one standard deviation of the (approxi-

mately) normal posterior distribution of the estimate for fixed

frequency. Figure 16 shows the corresponding graphs for the

spectral density; each ordinate in Figure 15 is just the natural

logarithm of the corresponding ordinate in Figure 16.
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APPENDIX

*' Proof of Theorem 4.1.

Set

z nJ :- [YnJ - RU(x nj)] (Al)

then E(Z - 0, Var(Z - 1, for j - 0,1, ... ,n; and

, Z no, ... are independent. From (2.7) we have

n
u . wnjrno (i )nr (Znj )Zn / ~n Rn(n )n -on(nj)]

.and from (2.1) and (2.4) we have

n
nr " (X/v' k) I V,-A r (x .) ( ) z + . .

-(1/y nj no nj nr nj nj nr'

Then from (2.10), (2.11), and (4.1) ,

V= v - 1 ,/W-,, (x,) r (x )z r -o,11, ... ,,. (A.)
- .0 nj nr nj no n nj I

Let f be the characteristic function of Z ;

f n(t) :- E[exp(itZ nj)] , j 0, 1, ... ,n. (A3)

Let k be an increasing sequence of integers satisfying the

hypotheses of Theorem 4.1, and let {anj - 0,1,..., kn ,

n 0,1, ... be an array of real numbers such chat k_ a2 =1.
j-n

Since Z , . , Z are independent, it follows fromno Un k
n

(A2) that the characteristic function of r-n a V ,
r-0 ~r nlr

f (t) :- E[exp(it I a V (M)n r-O nr nr
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is given by

f, (t) - f r (x kn a (x )Itfn () nj nj no nj  r-O anrr nj

For fixed t , set

ku
t :"[nr (x ) an (Xnj)]t (A5)

then

f ( W n f(tn ) (n)n J=O f n j  n

Since E(Zj) -0 and Var(Z ) -1, j - 0,1,... ,n

f n(t) - 1-t 2 /2+(%j /6)1 t 3 EI Iz 13

where anj.(l 1, and

f nj = 1 + enj, (A7)

where

- t2 / 2 + (at /6) I1tj I3 EIZ 3 1 (A8)

Since I& I(- 1, r - 0,1, ... , kn, by Hypothesis (4.3), we have

max{ItnjI : j - 0,1, ... ,}-. 0 as n -- w a, (A9)

for fixed t £ R. And according to (4.2), E(ZUJ1 3 (M M for all

j and n, so that

maz{enj . : J-0,1,...,n}- 0 as n- . (Alo)

... . . . . .
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*'.1
°
**

-* From (2.4) and (A5)

j-O njj-0 njn j r-0 nnr ni S-0 IIs ns nj

"kn
.t 2  a 2

*%

so that

,n t 2  . t2  (All)

.0nj

Then

4'n n

" l I8i I t2 / 2 + (14/6) J Itnj1 3

(- t 2 /2 + (1t2/6),max{ It : j - 0,1, ... ,n}

nn

l IO! I is bounded. (A12)
-0

Again, from (A8) and (All),

j. .,+ t2/2 (M2/6) 1AX{ It : j - 0,1, .. I

.om

.4 so that by (A9)

0 0 8nj --- 2 /2 as n-->e.
,' nJ

4,

4 , -.,.,%-_.4t. _.,'."; ; .. ." ..-... ",". .:.". .: .-. ,... . .'..'
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It follows from (A6), (A7), (A10), (A12), and (A13) that

*- U ~>erp(-t 2 f2)

f (t) - f ) J m  I ( + e8)j- (

as -> (Chung, 1968, page 184), for each real t - So

S aur Va converges in law to the standard normal distribution,

T-0

and the array V is jointly asymptotically normal.
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